汽车企业数字化转型如下:在汽车领域,整车数字化研发,大数据应用,电动化与智能化技术的不断突破都为汽车行业的强劲和可持续增长提供坚实可靠的基础。
汽车企业数字化转型节选:
在汽车智能化时代的背景下汽车数据的收集和使用不可避免,但也出现了安全和隐私泄露的风险。欧洲ADAC汽车协会针对33个品牌的237款车型进行了安全测试,结果显示99%的车辆能够被黑客解锁开走,整个过程最短仅需18秒。
随着《汽车数据安全管理若干规定(试行)》和《中华人民共和国个人信息保护法》等文件的出台,对于数据的合规使用提出了更严格的要求。
因此车企在采集和利用数据时,在保证数据安全的前提下,需要基于用途最小化的原则进行数据收集,例如采集用于自动/辅助驾驶的感知数据时避免车内数据的收集;用于驾驶员疲劳监测的数据尽量将图片或视频转换为2D/3D点云图像等,如此才能做到合理地采集数据并实现数据反哺。
我们毋庸置疑技术的重要性,但在传统观念和近年来技术发展路径的依赖下,更加需要被明确的概念是数字化转型并不是信息技术和工具的简单叠加,而需要兼顾技术、行业知识、组织、业务和流程的变革。
报告开篇提出,研发数字化的核心价值在于研发流程的变革,利用数据的流动缩短研发环节上的决策链。然而,数据的流动并非是技术的专利,业务流程和组织构架的转变同样可以实现研发流程的变革,同时节约大量成本。
但部分流程上的变革有悖于传统认知或牵涉多方利益,导致部分项目负责人以技术为由掩盖自身对于数字化认知的捉襟见肘。因此在技术发展日新月异的时代下,有能力兼顾技术应用和组织力量的企业才能在竞争中屹立不倒。
数字化转型是企业至关生死的长远规划,在过程当中切勿单点规划逐个推进,否则后期系统间协同、利益平衡、流程机制等问题将随着转型维度的扩大而被无限放大,此类系统性问题的叠加将导致数字化周期延长甚至在日益激烈的竞争中失去竞争地位。
因此,在数字化的源头要先做好数据治理和业务流程的梳理,不清晰的线下流程对于线上则毫无意义。在数据和流程基础夯实后,根据各企业的资源禀赋和发展战略等进行数字化顶层设计,构建内外部协同、目标兼容、纲举目张的整体构架。
但其并不意味着通过宏伟的顶层设计解决一切问题,而要在能够尽快看到成果的部分以协同的方式进行试点建设,在顶层设计的全局思维下看到局部成果并触类旁通后进行全面推广,以实现企业的高质量发展。
主机厂在云平台和数字孪生等技术上的应用仍处于探索前进的阶段,因此决策较为谨慎,会优先考虑其对于汽车行业的认知,和相关性高、可移植性高的成功案例。在云服务领域,多样的部署方案、安全性和连通性为主要的考虑因素。
数字孪生领域对于现有软件的兼容、互认,和整车级别的虚拟化协同仿真能力成为选型主要标准。研发平台则更多的被国外厂商垄断,其包含了数学、物理等基础学科的应用,因此对底层能力要求较高。而主机厂对于虚拟现实的know how则相对较少,更加注重包含软硬件在内的整体能力。
报告目录:
1、研发数字化理解;
2、整车研发项目综述;
3、研发数字化技术应用和价值体现;
4、研发数字化落地举措;
本文地址:https://www.baogaozhiku.com/5885.html